Mathematics Learning Activity Types^{1, 2}

The purpose of presenting an activity types taxonomy for mathematics is to introduce the full range of student learning activities for teachers to consider when building lessons that strive to effectively integrate technology, pedagogy, and content. In doing so, we attempt to scaffold teachers' thinking about how to best structure their learning activities, best support those activities with educational technologies, and to spark their creativity during instructional planning.

Essentially, these mathematics activity types are designed to be *catalysts* to thoughtful and creative instruction by teachers. We have conceptualized seven genres of activity types for mathematics that are derived from the National Council of Teachers of Mathematics' (NCTM's) process standards. To encourage active engagement by all students, these activity types are expressed using active words (verbs) to focus instructional planning on student rather than teacher actions. Many of these words are drawn directly from the NCTM standards. Each of the seven genres is presented in a separate table that names the activity types for that genre, briefly defines them, and then provides some example technologies that might be selected by a teacher while undertaking each activity. Please note that the specific software titles referenced in the Possible Technologies columns are meant to be illustrative. The taxonomy's authors do not specifically endorse any of the listed products.

The "Consider" Activity Types

When learning mathematics, students are often asked to thoughtfully consider new concepts or information. This request is a familiar one for the mathematics student, and is just as familiar to the teacher. Yet, although such learning activities can be very important contributors to student understanding, the "Consider" activity types also often represent some of the lower levels of student engagement, and typically are manifested using a relatively direct presentation of foundational knowledge.

Activity Type	Brief Description	Possible Technologies
Attend to a Demonstration	Students gain information from a	Document camera, content-
	presentation, videoclip, animation,	specific interactive tool (e.g.,
	interactive whiteboard or other display	ExploreMath), presentation or
	media	video creation software, video
		clips, videoconferencing

Table 1:	The	"Consider"	Activity	Types
			_	~ 1

² "Mathematics Learning Activity Types" by Neal Grandgenett, Judi Harris and Mark Hofer is licensed under a <u>Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License</u>. Based on a work at <u>activitytypes.wm.edu</u>.

¹ Suggested citation (APA format, 6th ed.):

Grandgenett, N., Harris, J., & Hofer, M. (2011, February). *Mathematics learning activity types*. Retrieved from College of William and Mary, School of Education, Learning Activity Types Wiki:

http://activitytypes.wm.edu/MathLearningATs-Feb2011.pdf

	Students extract information from	Electronic textbooks, websites
Read Text	textbooks or other written materials, in	(i.e. the Math Forum),
	either print or digital form	informational electronic
		documents (e.gpdfs)
	Students discuss a concept or process	Ask-an-expert sites (e.g., Ask
Discuss	with a teacher, other students, or an	Dr. Math), online discussion
	external expert	groups, videoconferencing
	Students examine a pattern presented to	Graphing calculators, virtual
	them and attempt to understand the	manipulative sites (e.g., the
Pagagniza a Pattorn	pattern better	National Library of Virtual
Recognize a ranem		Manipulatives), content-
		specific interactive tool (e.g.,
		ExploreMath), spreadsheet
	Students explore or investigate a concept	Content-specific interactive
	(such as fractals), perhaps by use of the	tool (e.g., ExploreMath), Web
Investigate a Concept	Internet or other research-related	searching, informational
investigate a concept	resources	databases (e.g., Wikipedia),
		virtual worlds (e.g., Second
		Life), simulations
	Students strive to understand the context	Web searching, concept
Understand or Define	of a stated problem or to define the	mapping software, ill-
a Problem	mathematical characteristics of a problem	structured problem media
		(e.g., CIESE Projects)

The "Practice" Activity Types

In the learning of mathematics, it is often very important for a student to be able to practice computational techniques or other algorithm-based strategies, in order to automate these skills for later and higher-level mathematical applications. Some educational technologies can provide valuable assistance in helping students to practice and internalize important skills and techniques. This table provides some examples of how technology can assist in these important student practice efforts.

Table 2: The	"Practice"	Activity	Types
--------------	------------	----------	-------

Activity Type	Brief Description	Possible Technologies
	Students undertake computation-based	Scientific calculators,
Do Computation	strategies using numeric or symbolic	graphing calculators,
	processing	spreadsheet, Mathematica
	Students rehearse a mathematical strategy	Drill and practice software,
Do Drill and Practico	or technique, and perhaps uses computer-	online textbook supplements,
Do Dilli alla Flactice	aided repetition and feedback in the	online homework help
	practice process	websites (e.g., WebMath).
	Students carry out a mathematical	Virtual manipulatives, Web-
Solve a Puzzle	strategy or technique within the context	based puzzles (e.g., magic
	of solving an engaging puzzle, which	squares), mathematical
	may be facilitated or posed by the	brainteaser Web sites (e.g.,
	technology	CoolMath)

The "Interpret" Activity Types

In the discipline of mathematics, individual concepts and relationships can be quite abstract, and at times can even represent a bit of a mystery to students. Often students need to spend some time deducing and explaining these relationships to internalize them. Educational technologies can be used to help students investigate concepts and relationships more actively, and assist them in interpreting what they observe. This table displays activity types that can support this thoughtful interpretation process, and provides some examples of the available technologies that can be used to support forming the interpretations.

Activity Type	Brief Description	Possible Technologies
· · · ·	The student poses a conjecture, perhaps	Dynamic geometry software
	using dynamic software to display	(e.g., Geometer's Sketchpad),
Pose a Conjecture	relationships	Content-specific interactive
		tool (e.g., ExploreMath), e-
		mail
	The student develops a mathematical	Concept mapping software,
Develop on Argument	argument related to why they think that	presentation software, blogs,
Develop all Algument	something is true. Technology may help	specialized word processing
	to form and to display that argument.	software (e.g., Theorist)
	The student attempts to examine a	Database software, online
Categorize	concept or relationship in order to	databases, concept mapping
Cutegonize	categorize it into a set of known	software, drawing software
	categories	
	The student explains the relationships	Data visualization software
	apparent from a mathematical	(e.g., Inspire Data), 2D and
Interpret a	representation (table, formula, chart,	3D animations, video clips,
Representation	diagram, graph, picture, model,	Global Positioning Devices
	animation, etc.)	(GPS), engineering-related
		visualization software (e.g.,
		MathCad)
	The student attempts to approximate	Scientific calculator, graphing
Estimate	some mathematical value by further	calculator, spreadsheet,
	examining relationships using supportive	student response systems (e.g.
	technologies	"clickers")
	Assisted by technology as needed, the	Digital cameras, video,
T	student examines a mathematics-related	computer-aided laboratory
Interpret a	phenomenon (such as velocity,	equipment, engineering-
Phenomenon	acceleration, the Golden Ratio, gravity,	related visualization software,
Mathematically	etc.)	specialized word processing
		software (e.g., Theorist),
		robotics, electronics kits

Table 3: The "Interpret" Activity Types

The "Produce" Activity Types

When students are actively engaged in the study of mathematics, they can become motivated producers of mathematical works, rather than just passive consumers of prepared materials. Educational technologies can serve as excellent "partners" in this production process, aiding in the refinement and formalization of a student product, as well as helping the student to share the fruits of their mathematical labors. The activity types listed below suggest technology-assisted efforts in which students become "producers" of mathematics-related products.

Activity Type	Brief Description	Possible Technologies
	The student makes a demonstration on	Interactive whiteboard, video
	some topic to show their understanding of	creation software, document
Do a Domonstration	a mathematical idea or process.	camera, presentation software,
Do a Demonstration	Technology may assist in the	podcasts, video sharing site
	development or presentation of the	
	product.	
	The student produces a report,	Specialized word processing
	annotation, explanation, journal entry or	software (e.g., Math Type),
Generate Text	document, to illustrate their	collaborative word processing
	understanding.	software, blogs, online
		discussion groups
	Assisted by the technology in the	Logo graphics, engineering
Describe an Object or	description or documentation process, the	visualization software,
Concept	student produces a mathematical	concept mapping software,
Mathematically	explanation of an object or concept	specialized word processing
		software, Mathematica
	Using technology for production	Spreadsheet, virtual
Produce a	assistance if appropriate, the student	manipulatives (e.g., digital
Pepresentation	develops a mathematical representation	geoboard), document camera,
Representation	(table, formula, chart, diagram, graph,	concept mapping software,
	picture, model, animation, etc.)	graphing calculator
Davalon e Problem	The student poses a mathematical	Word processing software,
	problem that is illustrative of some	online discussion groups,
Develop a l'iobienn	mathematical concept, relationship, or	Wikipedia, Web searching, e-
	investigative question	mail

Table 4: The "Produce" Activity Types

The "Apply" Activity Types

The utility of mathematics in the world can be found in its authentic application. Educational technologies can be used to help students to apply their mathematical knowledge in the real world, and to link specific mathematical concepts to real world phenomena. The technologies essentially become students' assistants in their mathematical work, helping them to link the mathematical concepts being studied to the reality in which they live.

Activity Type	Brief Description	Possible Technologies
	The student reviews or selects a	Online help sites (e.g.,
	mathematics-related strategy for a	WebMath, Math Forum),
Chasse a Strategy	particular context or application.	Inspire Data, dynamic
Choose a Strategy		geometry/algebra software
		(e.g., Geometry Expressions),
		Mathematica, MathCAD
	The student demonstrates their	Test-taking software,
Taka a Taat	mathematical knowledge within the	Blackboard, online survey
Take a Test	context of a testing environment, such as	software, student response
	with computer-assisted testing software.	systems (e.g. "clickers")
	The student applies a mathematical	Spreadsheet, robotics,
Apply a Representation	representation to a real life situation	graphing calculator,
	(table, formula, chart, diagram, graph,	computer-aided laboratories,
	picture, model, animation, etc.).	virtual manipulatives (e.g.,
		electronic algebra tiles)

Table 5: The "Apply" Activity Types

The "Evaluate" Activity Types

When students evaluate the mathematical work of others, or self-evaluate their own mathematical work, they engage in a relatively sophisticated effort to try to understand mathematical concepts and processes. Educational technologies can become valuable allies in this effort, assisting students in the evaluation process by helping them to undertake concept comparisons, test solutions or conjectures, and/or integrate feedback from other individuals into revisions of their work. The following table lists some of these evaluation-related activities.

Table 6:	The	"Evaluate"	Activity	Types
----------	-----	------------	----------	-------

Activity Type	Brief Description	Possible Technologies
Compare and Contrast	The student compares and contrasts	Concept-mapping software
	different mathematical strategies or	(e.g., Inspiration), Web
	concepts, to see which is more	searches, Mathematica,
	appropriate for a particular situation.	MathCad
Test a Solution	The student systematically tests a	Scientific calculator, graphing
	solution, and examines whether it makes	calculator, spreadsheet,
	sense based upon systematic feedback,	Mathematica, Geometry
	which might be assisted by technology.	Expressions

	The student poses a specific conjecture	Geometer Sketchpad, content-
	and then examines the feedback of any	specific interactive tool (e.g.,
Test a Conjecture	interactive results to potentially refine the	ExploreMath), statistical
Test a Conjecture	conjecture.	packages (e.g., SPSS,
		Fathom), online calculators,
		robotics
Evaluate Mathematical Work	The student evaluates a body of	Online discussion groups,
	mathematical work, through the use of	blogs, Mathematica,
	peer or technology-aided feedback.	MathCad, Inspire Data

The "Create" Activity Types

When students are involved in some of the highest levels of mathematics learning activities, they are often engaged in very creative and imaginative thinking processes. Albert Einstein once suggested that "imagination is more important than knowledge." It is said that this quote represents his strong belief that mathematics is a very inventive, inspired, and imaginative endeavor. Educational technologies can be used to help students to be creative in their mathematical work, and even to help other students to deepen their learning of the mathematics that they already understand. The activity types below represent these creative elements and processes in students' mathematical learning and interaction.

Activity Type	Brief Description	Example Technologies
	The student develops and delivers a	Document camera,
	lesson on a particular mathematics	presentation software,
Teach a Lesson	concept, strategy, or problem.	videoconferencing, video
		creation software, podcasts
	The student develops a systematic plan to	Concept mapping software,
Croata a Dian	address some mathematical problem or	collaborative word processing
Cleale à Flair	task.	software, MathCad,
		Mathematica
	The student imaginatively engages in the	Word processing software,
	development of a student project,	videocamera, animation tools,
Create a Product	invention, or artifact, such as a new	MathCad, Mathematica,
	fractal, a tessellation, or another creative	Geometer Sketchpad
	product.	
Create a Process	The student creates a mathematical	Computer programming,
	process that others might use, test or	robotics, Mathematica,
	replicate, essentially engaging in	MathCad, Inspire Data, video
	mathematical creativity.	creation software

Table 7: The "Create" Activity Types