Science Learning Activity Types^{1, 2}

Of the forty science activity types that have been identified to date, twenty-eight are focused upon helping students build their knowledge of science concepts and procedures. Seventeen of the knowledge-building activity types emphasize *conceptual* learning and eleven of these involve *procedural knowledge* employed in science learning. Twelve of the activity types describe activities that facilitate students' knowledge expression. The three sets of activity types (conceptual knowledge building, procedural knowledge building, and knowledge expression) are presented in the tables that follow, including compatible technologies that may be used to support each type of learning activity. The technologies listed in the tables are meant to be illustrative. The taxonomy authors do not necessarily endorse the specific software titles and/or Web sites listed.

Conceptual Knowledge Building Activity Types

As the table of activity types below shows, teachers have a variety of options available to assist students in building science conceptual knowledge.

Table 1: Conceptual Knowledge Building Activity Types

Activity Type	Brief Description	Possible Technologies
Read Text	Students extract information from	Web sites, electronic books,
	textbooks, laboratories, etc.; both print-	online databases, magazines
	based and digital formats	
Attend to	Students gain information from teachers,	Presentation software,
Presentation/	guest speakers, and peers; in person or via	document camera, video
Demonstration	video, oral or multimedia	
Take Notes	Students record information from lecture,	Word processing software,
	presentation, group work	wiki, concept mapping
		software
View Images/Objects	Students examine both still and moving	Document camera, digital
	(e.g., video, animations) images/objects;	microscope, digital camera,
	print-based or digital format	video,(e.g., documentaries or
		debates), Web sites
Discuss	Students engage in dialogue with one or	Online discussion fora,
	more peers or the entire class;	email, chat, blog,
	synchronous/asynchronous	videoconferencing,
		interactive white board

¹ Suggested citation (APA format, 6th ed.):

[&]quot;Science Learning Activity Types" by Margaret R. Blanchard, Judi Harris and Mark Hofer is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License. Based on a work at activitytypes.wm.edu

Blanchard, M. R., Harris, J., & Hofer, M. (2011, February). *Science learning activity types*. Retrieved from College of William and Mary, School of Education, Learning Activity Types Wiki: http://activitytypes.wm.edu/ScienceLearningATs-Feb2011.pdf

Participate in a Simulation	Students interact with live or digital simulations that enable students to explore science content	Curriculum software, Web- based simulations, student response systems ("clickers")
Explore a Topic/Conduct background research	Students gather information/conduct background research using print-based and digital sources	Web search engines, digital archives
Study	Students study terminology, classifications, test review, etc.	Web sites, quiz software, online text supplements, wikis
Observe Phenomena	Students observe phenomena that raise scientific questions from physical objects, organisms, or digital media	Video clips, digital microscope, document camera, presentation software
Distinguish Observations from Inferences	Students distinguish directly observed sensory input from inferences requiring background knowledge	Interactive whiteboard, document camera, video clips, audio recording
Develop Predictions, Hypotheses, Questions, Variables	Students develop/think about predictions and select pertinent hypotheses, testable questions, and variables	Word processing software, interactive whiteboard, concept mapping software, wiki
Select Procedures	Students select procedures and accompanying instruments to test hypotheses and/or answer questions	Probeware, digital stirrer, video/audio recorder, digital camera, digital timer, graphing calculator
Sequence Procedures	Students sequence the order of procedures to collect relevant data	Simulation, curriculum software, word processing software
Organize/Classify Data	Students create a structure to organize data collected	Database, spreadsheet, concept mapping software
Analyze Data	Students recognize patterns, describe relationships, understand cause-and-effect, prioritize evidence, determine possible sources of error/discrepancies, etc.	Spreadsheet, TinkerPlots, graphing calculator, statistical software
Compare Findings with Predictions/ Hypotheses	Students evaluate their findings in relation to their hypotheses	Spreadsheets, TinkerPlots, InspireData
Make Connections between Findings & Science Concepts/Knowledge	Students link their findings to concepts in the text/research publications	Web search engines

Procedural Knowledge Building Activity Types

In science classrooms, building conceptual knowledge frequently requires that students use materials and "process" skills (Millar & Driver, 1987) as they develop scientific knowledge. The essential features of classroom inquiry promoted by the National Science Education Standards often engage students in procedures and the use of scientific equipment (NRC, 2000). We term this kind of understanding *procedural knowledge*, as detailed in the table below.

Table 2: Procedural Knowledge Building Activity Types

Activity Type	Brief Description	Possible Technologies
Learn and Practice	Students learn how to safely and	Video clips, document
Safety Procedures	appropriately handle equipment	camera
	Students learn how to make measurements	Probeware, content-specific
Measure	appropriately with specific tools (e.g.,	interactive tools (e.g.,
	graduated cylinder, motion sensor)	ExploreScience)
	Students practice using equipment,	Web-based software or
Practice	software, measuring, testing what they have	software tutorials,
Tactice	designed, etc.	probeware, document
		camera
Prepare/Clean Up	Students organize equipment or information	Document camera, projector
repare/Cicair Op	for the laboratory	
	Students run trials or otherwise carry out	Simulation, curriculum
Carry Out Procedures	steps to investigations (e.g. use an	software
	electronic balance)	
	Students make observations from physical	Document camera,
Observe	or digital experiences	WebCams, digital/video
		cameras, digital microscopes
	Students record observational and	Spreadsheet, word
Record Data	previously recorded data in tables, graphs,	processing software,
Accord Data	images, lab notes	database, handheld
		computer, tablet computers
Generate Data	Students generate data (e.g. heart rate,	Curriculum software,
	cooling water temperatures) by	graphing calculators,
	manipulating equipment or animations	probeware, digital balance
	Students collect data with physical objects	Graphing calculators, video,
Collect Data	or simulations	audio, digital cameras,
Concer Data		digital microscopes, Web-
		based data sets
Collect Samples	Students obtain samples/items to study	Digital cameras, videos,
	(e.g., soil, bird songs, video footage)	audio recorder
Compute	Students calculate results from data	Scientific calculator,
		spreadsheet

Knowledge Expression Activity Types

While in many cases teachers may want their students to express similar understandings of course content, at other times they will want to encourage students to develop and express their own understandings of a given topic. The following twelve *knowledge expression activity types* afford students opportunities to share and further develop current understandings of concepts, procedures, and relationships.

 Table 3: Knowledge Expression Activity Types

Activity Type	Brief Description	Possible Technologies
Respond to questions	Students respond to teacher-supplied, peer- written, published, or digitally posed questions (e.g., that require short answers, explanations, or elaborations)	Curriculum software, word processing software, quiz software, Web sites, online discussion fora
Write a Report	Students write a laboratory or research report	Word processing software, presentation software, video creation software, wiki, podcast
Create an Image	Students create an image to demonstrate their knowledge of a science concept and/or process	Drawing software, digital camera, comic creation software,
Present or Demonstrate	Students present or demonstrate laboratory or research findings, or other course learning (e.g. a system of the human body)	Presentation software, video creation software, document camera, podcast, Glogster
Take a Quiz or Test	Students respond to questions on a test or quiz	Curriculum software, word processor, quiz software, Web sites, student response systems
Debate	Students discuss opposing viewpoints embedded in science content knowledge, linked to ethics, nature of science, personal preferences, politics, etc.	Videoconferencing, discussion board, personal/student response system
Develop or Build a Model	Students physically or digitally create models to demonstrate content knowledge, conduct experiments, etc. (e.g. cell model, rubber band car)	Modeling software, drawing tools, concept mapping software
Draw/Create Images	Students physically or digitally draw or create images (from labs, observations, etc.)	Drawing software, digital camera, image editing software
Develop a Concept Map	Students participate in or develop graphic organizers, semantic maps, etc.	Concept mapping software, interactive whiteboards, drawing software
Play a Game	Students participate in games; group or individual; digital or physical; original or pre-made.	Curriculum software, personal/student response systems, web-based games

	Students develop a physical or digital	Word processing software,
	interactive game	web authorizing software,
		videogame development
		software (e.g. MIT Media
		Lab)
	Students create and/or perform a script, rap,	Video, audiorecorder, digital
	song, poem, collection, poster, invention,	camera, document camera,
	exhibit, etc.	word processing software,
		Glogster, video creation
		software, wiki, Web
		authoring software,
		presentation software

References:

Millar, R. & Driver, R. (1987). Beyond processes. Studies in Science Education, 14, 33-62.

National Research Council. (2000). *Inquiry and the national science education standards*. Washington, DC: National Academy Press.